

Die µsoft Softwarepakete bieten verschiedene Datenformate bzw. Transferformate für den Import und Export der Messdaten in andere Programme. Der Tipp #11 gibt Ihnen eine Übersicht und notwendige Hilfestellung zur Vorgehensweise beim Export bzw. beim Import von Messdaten, Studien und Parametern. Weiterhin wird die Möglichkeiten des Bild- bzw. Filmexports von 3D-Daten vorgestellt.

Allgemein

Die mit dem µsurf, µscan bzw. µsprint aufgenommenen Daten enthalten neben der Topografie verschiedene weitere Daten und Messinformationen. Bei der Messung werden zum Beispiel auch das Reflexionsbild und falls verfügbar ein Fokusbild (unendlich scharfes Mikroskopbild) gespeichert .

Beim Exportieren werden meist nur die Topografiedaten übernommen. Je nach Speicherformat gehen andere Informationen und Bilder verloren. So enthält eine ASCII-Exportdatei nur Topografiedaten. Intensitätsdaten, Fokusbild und Metadaten (Datum, Messfeld, Anzahl gültiger Messpunkte, etc.) werden in anderen Formaten gespeichert oder gehen verloren.

Die untenstehende Tabelle gibt Ihnen eine Übersicht, welche Daten mit welchem Exportformat gespeichert werden. Prüfen Sie vor jedem Export, welche Informationen für die Weitergabe der Daten notwendig sind und wählen Sie das geeignete Exportformat.

Topografiedaten	Bildet die Oberfläche des Messobjektes Punkt für Punkt ab
Intensitätsdaten	Graustufenbild, welches die Reflexion der einzelnen Oberflächenpunkte zeigt
Fokusbild	Unendlich scharfes Mikroskopbild der Probenoberfläche
Metadaten	Je nach Speicherformat werden Informationen zur Messung gespeichert

NanoFocus AG

µsoft/ µsoft control

Die Messung kann in alternativen Datenformaten gespeichert werden. Gehen Sie dazu wie folgt vor:

Messung speichern unter → im Drop-Down Menü kann der gewünschte *Dateityp* ausgewählt werden.

Die Tabelle enthält eine Übersicht der exportierbaren Datenformate.

Format	Daten				Erläuterung		
	Topografie	Intensität	Fokusbild	Meta			
nms	х	х	x	x	μsurf/μscan Datenformat der NanoFocus AG		
X3P	х			x	Standardisiertes offenes Datenformat für 3D-Punktdaten		
ASCII	х				Daten in Matrixform in txt- Datei		
dat	х				Daten in Spaltenformat (XYZ)		
sur	х	х	x	x	Digital Surf Format, kompatibel zu µsoft analysis		
ub3, sdf					Ältere nicht mehr verwendete Datenformate		

ASCII/.txt

Die Daten werden in Form einer Matrix abgelegt. Dabei stehen in der ersten Spalte die y-Koordinaten und in der ersten Zeile die x-Koordinaten. Alle anderen Matrixelemente sind Höhendaten. Die Einheit ist Mikrometer.

Kopfzeile: 1

Trennzeichen: Tabulator

Dezimaltrenner: Punkt

Datei Bearbeiten Format	Ansicht ?			
DATA				
0.000000	1.952993	3.905986	5.858979	7.811972
.393306 193.346299	195.299292	197.252285	199.205278	201.158271
021648 374.974641	376.927634	378.880627	380.833620	382.786613
49990 556,602983	558, 555976	560, 508969	562,461961	564,414954
8331 738, 231 324	740.184317	742,137310	744,090303	746.043296
673 919 859666	921 812659	923 765652	925 718645	927 671638
0 000000 19 16	6822 19 22	2433 18 70	9844 18 18	958 17 61
3016 -10 634625	-10 612864	-11 025111	-11 125452	-11 497804
14 277145 -14 3	90785 -14 7	62637 -14 1	19983 -14 04	9865 -13 0
5102 15 025220	15 572650	15 100008	15 277670	15 622225
712052 0 591170	0 707570	0 858025	0 676685	0 424018
12 909079 12 7	57202 12 5	01670 12 5	05206 12 45	6279 12 4
1 054204 10.84	1407 10 64	0724 10.02	1740 18 666	17 01
10 240216	10 520110	10 843770	10 072126	10 01 5008
50644 -10.549510 5065003 14 407710	-10.359119	-10.845770	-10.975120	-10.913098
. 596303 -14.407710	-14.2408//	-13.918091	-13.925345	-14.082506
5904 15.9812/9	15.205590	15.254/09	15.419124	15./39492
9.8/85// 9.905	1/4 10.08	10.08	9./830	//1 /.945
69 -14.031/31	-13./83899	-13./64556	-13.61585/	-13.335385
3.908408 20.2/	6623 20.1/	7491 19.04	8346 18.39:	103 17.88
3325 -9.82/056	-10.24//66	-10.31/884	-10.464165	-10.36/450
717 -14.362979	-13.267684	-12.952152	-12.979958	-13.282191
83 16.495076	15.469900	15.380438	15.625852	15.977652
19 10.110693	10.103439	10.131244	10.113110	8.962205
.026684 -14.508051	-14.048656	-13.931389	-13.647290	-13.238670
5.862612 20.69	4915 19.98	4061 18.53	5758 18.209	345 17.99
08792 -9.821012	-9.892339	-9.736386	-9.853653	-10.026531
0 -13.121403	-12.976331	-12.954570	-12.990838	-12.987211
16.174708 15.71	0478 15.88	16.24	5036 17.103	170 17.60
52 10.081678	10.050246	9.656133	4.865125	4.718844
. 649497 -14.049865	-13,914464	-13, 502218	-13,065792	-12,983585
7.816816 20.24	6400 19,61	6545 18,63	3681 18,235	942 17.67
-8.850237 -9.66	8686 -9.75	0894 -9.69	5492 -9.784	744 -9.72
5105025. 5100		5.05	5.75	
•				

NanoFocus AG

µsoft metrology

Die aktuelle Version der Steuersoftware von µsurf-Geräten enthält eine Überarbeitung und Aktualisierung der Exportformate. Eine Übersicht über die Möglichkeiten finden Sie in der untenstehenden Tabelle.

Zum Speichern in einem bestimmten Formaten wird im Namensfeld die entsprechende Dateiendung ergänzt.

Format	Daten				Erläuterung			
	Topografie Intensität Fokusbild Meta		Meta					
nms	х	x	x	x	µsurf/µscan Datenformat der NanoFocus AG			
sip	х	x			μsprint Dateiformat			
X3P	х			x	Standardisiertes offenes Datenformat für 3D-Punktdate			
CSV	х				In Excel importierbare Daten in Spaltenformat (XYZ)			
png								
jpg					Aktuelle Ansicht wird als Bilddatei gespeichert			
bmp								

Offenes 3D-Datenformat -X3P

X3P ist ein neues flexibles 3D-Datenaustauschformat für Oberflächenprofile, welches den reibungslosen Transfer von 3D-Daten verschiedener Messsysteme ermöglicht, ohne auf Rückverfolgbarkeit zu verzichten. Es wurde vom OpenGPS Konsortium (Vertreter von Messtechnikherstellern, Hochschulen wie etwa der Universität Kaiserslautern und Einrichtungen wie der Physikalisch-Technischen Bundesanstalt) entwickelt. Basis des Datenformates sind die erprobte XML-Sprache, das ZIP-Archivformat sowie die DIN/EN/ISO Norm 5436-2 aus dem Jahr 2001.

Der Datensatz besteht neben den 3D-Oberflächendaten, aus Metadaten zur Messung wie zum Bespiel Zeitpunkt der Messung, Anzahl gültiger Datenpunkte, Typ und Seriennummer des Messsystems etc.

Das X3P Datenformat ist kompatibel zur µsoft analysis und Programmen anderer Messtechnikherstellern. Die Anzahl der Implementierungen steigt stetig.

CSV-Datenformat

Zum Speichern eines Datensatzes im CSV Format geben Sie im Speicherfenster nach dem Dateinamen die Endung CSV ein.

Die Daten werden in X/Y/Z Spalten abgespeichert.

Kopfzeilen: 7 (Punktanzahl, Einheit, etc.)

Trennzeichen: Tabulator

Dezimaltrenner: Punkt

NanoFocus AG

µsoft analysis

In der µsoft analysis lassen sich Datensätze in verschiedenster Art und Weise exportieren. Der große Vorteil der Software besteht darin, dass zu jeder Zeit auf verschiedene Bearbeitungsschritte zurückgegriffen werden kann und diese Dateien exportiert werden können.

Für die volle Kompatibilität mit der µsoft control bzw. µsoft metrology stehen als Speicherformat *.nms und *.sip zur Verfügung. Die Werte lassen sich ebenso als ASCII-Datei mit definierten Spezifikationen bezüglich Trennung exportieren. Darüber hinaus können sogar Ergebnisse bzw. Graphen von Studienobjekten im ASCII- bzw. CSV- Format gespeichert werden.

ASCII-Export von Profilen und Oberflächen

Zum Export eines Datensatzes als ASCII Datei gehen Sie bitte folgendermaßen vor:

1. Wählen Sie die Messdaten im Analyseablauf aus.

2. Gehen Sie auf *Datei --> Oberfläche speichern* und wählen Sie unter Dateityp ASCII Oberfläche (*.txt).

- 3. Sie erhalten das rechts dargestellte Exportfenster.
- Export-Typ: Wählen Sie Alle Koordinaten exportieren.

Optionen: Wählen Sie das Trennzeichen für die Spalten (Tabulator, Semikolon, Komma oder) Leerzeichen und das Dezimalzeichen (Punkt, Komma).

Einheiten: Wählen Sie die Maßeinheit, in der Sie die Daten exportieren möchten. Diese Angaben müssen Sie beim Import der Daten in ein Programm angeben. Für das µsurf empfiehlt sich Mikrometer.

Daten in ASCII-Datei exportiern								
Export-Typ								
Nur Höhenangaben exportieren (Z-Koordinate)								
Alle Koordinaten exportieren (X, Z oder X, Y, Z)								
Optionen								
O Automatisch (Windows-Einstellungen benutzen)								
I Folgende Optionen benutzen:								
Trennzeichen Tab								
Dezimalpunkt (1.23) 💿 Komma (1,23)								
Offset zur Z-Koordinate addieren								
Offset zu X- und Y-Koordinaten addieren								
Einheiten								
XYZ mm • µm •								
OK Abbrechen Hilfe								

NanoFocus AG

ASCII-Import von Profilen und Oberflächen

Um eine ASCII Datei zu importieren gehen Sie auf **Datei** --> **Studienobjekt** öffnen. Wenn Sie Daten in einen vorhandenen Analyseablauf einfügen wollen, klicken Sie auf das dort vorhandene Ordnersymbol.

Wählen Sie die Datei im Windows Explorer aus und öffnen Sie diese.

Es erscheint der rechts dargestellte Dialog:

Organisation der Daten:

Für einen Datensatz, welcher auf einem Spaltenformat beruht, wählen Sie ASCII Punktewolke (X,Y,Z) Koordinaten. Ist Ihnen die Organisation nicht bekannt, wählen Sie den Punkt **Unbekannte Organisation**.

Sind Headereinträge in der Datei vorhanden, können diese mit dem Eintrag in **Zeile/Spalte überspringen** berücksichtigt werden.

Trennzeichen zwischen Daten:

Wählen Sie das vorhandene Trennzeichen. Sind alle ausgewählt, sucht das Programm automatisch unter den gewählten Zeichen. Anschließend wählen Sie die Einheit der X,Y und Z-Achse.

Interpolation:

Gibt es Fehlstellen in der Datei, werden diese ausgefüllt. Die Einstellungen dazu, werden für die X- und Y-Achse einzeln festgelegt. Bitte stellen Sie die Werte für die X und Y-Achse auf den geringst möglichen Wert ein (hier "1") um den Einfluss auf die Daten zu minimieren.

ganisation der Daten		Vorschau		
O Unbekannte Organisation versuchen)	(das Programm soll es eigenständig			
C ASCII-Profile: Z-Höhenang	gaben			
C ASCII-Profile: (X, Z) Koord	dinaten			
Parametrisches ASCII-Pro	ıfil: (X,Y)-Koordinaten			
O ASCII Surface: Z-Höhenar	ngaben			
O ASCII-Studienobjekt: (X,)	Y, Z)-Koordinaten			
ASCII Punktewolke: (X, Y,	, Z) Koordinaten	1 PENNER B		
Die ersten Zeilen der Dat überspringe	tei 7 Linien			
Erste Spalten der Dat	tei 0 Spalten	A CONTRACTOR		
Y-Achse umkehren	n:			
ennzeichen zwischen Dat	en			
Tabulator	V Komma			
Leerzeichen	Strichpunkt	🕅 Vorschau nicht anzeigen		
nheiten		Internolation		
incluein		Wählen sie den Interpolations-Wert, der zum Laden der		
Achslänge definieren	 Achsabstand definieren 	Oberfläche benutzt wird. Dieser Wert wird dafür benutzt werden, die fehlenden Punkte in der Datei zu ersetzen.		
Länge der X-Achse.	10 µm -	Umso größer der Wert, umso größer sind die Bereiche, die von der Interpolation betroffen sind.		
Länge der Y-Achse.	10 µm 🔻			
Länge der Z-Achse.	10 µm 👻	X-Achse: 1 V-Achse: 1 V		

Tipp

Für eine effiziente Bearbeitung bei Vielfachimport können die Importeinstellungen unter **Optionen --> Grundeinstellungen --> ASCII Dateiformat** festgelegt werden. Mit der Auswahl von **Benutzen Sie diese Standardwerte, anstatt den Dialog anzuzeigen** entfällt der Importdialog beim Öffnen.

NanoFocus AG

ASCII-Export von Studien und Parameterergebnissen

Werte von Studien können als ASCII Datei gespeichert werden. Wählen Sie dazu die Studie, z.Bsp. eine Abbottkurve an. Öffnen Sie das Menü (Rechte Maustaste) und wählen Sie **Die Werte der Abbottkurve in eine ASCII-Datei exportieren**.

Zahlenergebnisse wie z.Bsp. Rauheitswerte können über Datei --> Zahlenergebnisse in eine Text-Datei exportieren übertragen werden. Mit dieser Funktion werden alle im Dokument vorhandenen Ergebnisse exportiert.

Zahlenergebnisse verschiedener Datensätze können gebündelt werden, indem beim Export beim Speichervorgang die identische Textdatei ausgewählt wird. Vorraussetzung hierfür ist, dass zur Analyse das identische Dokument verwendet wird.

Die Zahlenwerte werden in Spalten geschrieben. Zur eindeutigen Zuordnung wird der Pfad des Dokuments, aus dem der Zahlenexport stammt mit gespeichert.

Export von Bildern und Videosequenzen

Alle Bilder im Dokument können per STRG+C kopiert und mit STRG+V in die Zieldatei eingefügt werden. Mit **Datei** --> **Objekt** als Bild exportieren speichern Sie direkt eine Bilddatei ab.

Eindrucksvolle Bilder ergibt eine Vidosequenz eines 3D-Datensatzes. Wählen Sie dazu eine 3D-Oberfläche. Öffnen Sie das Menü (Rechte Maustaste) und definieren Sie einen Flugpfad (Flugpfaddefinition) oder wählen Sie einen bereits vorhandenen Flugpfad. Genaueres entnehmen Sie bitte der Hilfe. Gehen Sie dann im Menü auf *Videosequenz exportieren*, wählen Sie einen Namen und die Datei wird aufgenommen und gespeichert.

	С	D	E	F	G	н	1
1	#	534	534	534	534	534	534
2	#	c1	c2	c2 - c1	Smr(c1)	Smr(c2)	Smr(c2) - Smi
3	#	μm	μm	μm	%	%	%
4	C:\DATEN\	0,62959489	1,07065488	0,44105999	5	95	90
5	#	534	534	534	534	534	534
6	#	c1	c2	c2 - c1	Smr(c1)	Smr(c2)	Smr(c2) - Sm
7	#	μm	μm	μm	%	%	%
8	C:\DATEN\	0,62959489	1,07065488	0,44105999	5	95	90

NanoFocus AG